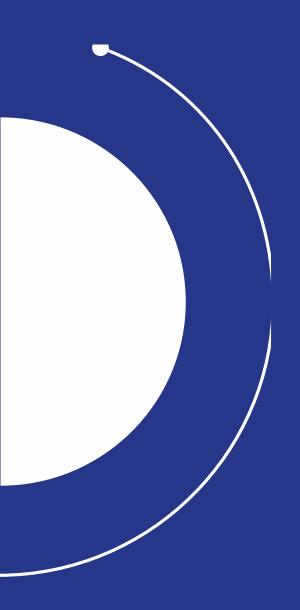
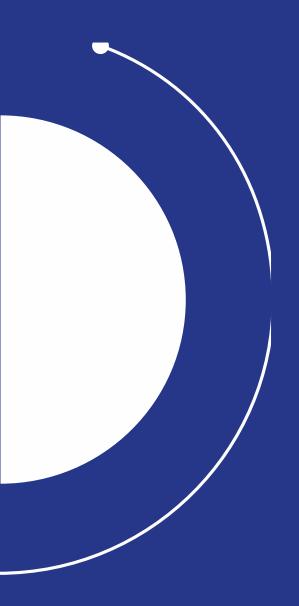


EURISA: Developing a European IMU for Scientific and Commercial Applications

JJ. Bonnefois, P. Cheiney, L. Dutheil, L. Ferraioli, R. Fredouille, O. Jolly, N. Kossa, G. Lecamp, S. Masson, JP. Michel, D. Negretto, C. Ollivier, C. Roudier, S. Theil, C. Sieg, E. de Toldi, X. Weilemann





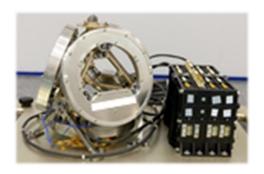
Outline

- 1. Project Presentation
- 2. Targeted Missions
- 3. IMU Main Features & Architecture
- 4. IMU Inertial Measurements
- 5. Development Progress

Project Presentation

Inertial Measurement Unit (IMU)

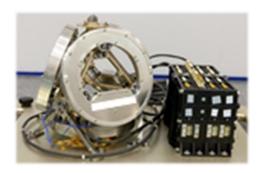
Capture the 6-degrees of freedom in space:


- 。 3 rotations: 3 gyroscopes (FOG)
- 3 translations: 3 accelerometers (ACC)

Deliver **navigation** data:

- Sensors thermal behavior known and modeled
- Thermal model integrated
- On-board navigation algorithm: FPGA
- > Navigate in harsh thermal and mechanical environments

2007



Astrix 200

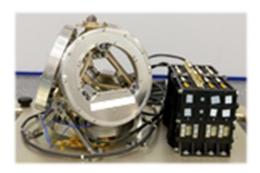
- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Gyroscope

2007

Astrix 200

- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Gyroscope

2017



Astrix 1090A

- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Integration of the whole equipment
- Acceptance tests of the equipment
- o 6-axis IMU

2007

Astrix 200

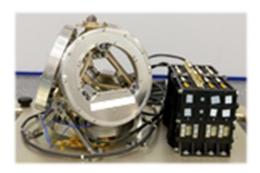
- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Gyroscope

2017

Astrix 1090A

- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Integration of the whole equipment
- Acceptance tests of the equipment
- 。 6-axis IMU

2023



Astrix NS

- Exail product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Integration of the whole equipment
- Acceptance tests of the equipment
- Design of the electronic boards
- Gyroscope

2007

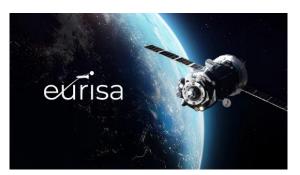
Astrix 200

- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Gyroscope

2017

Astrix 1090A

- Airbus product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Integration of the whole equipment
- Acceptance tests of the equipment
- 。 6-axis IMU


2023

Astrix NS

- Exail product
- Design and manufacturing of the optical gyroscope
- Tests and validation of subsystems
- Integration of the whole equipment
- Acceptance tests of the equipment
- Design of the electronic boards
- Gyroscope

2025

- European project lead by Exail
- Integration of the 3 accelerometer channels
- 6-axis integrated IMU

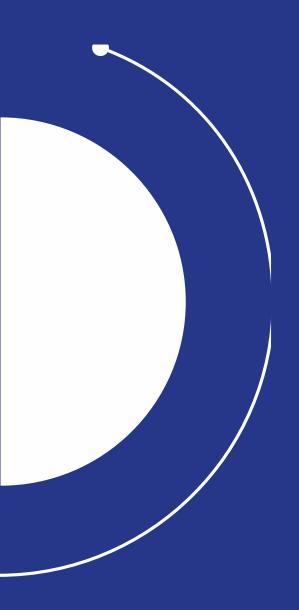
EURISA: a Space European Inertial Measurment Unit

H2020 project supported by the European Union gathering 4 partners:

AIRBUS

- Market Study
- Specifications
- Expertise

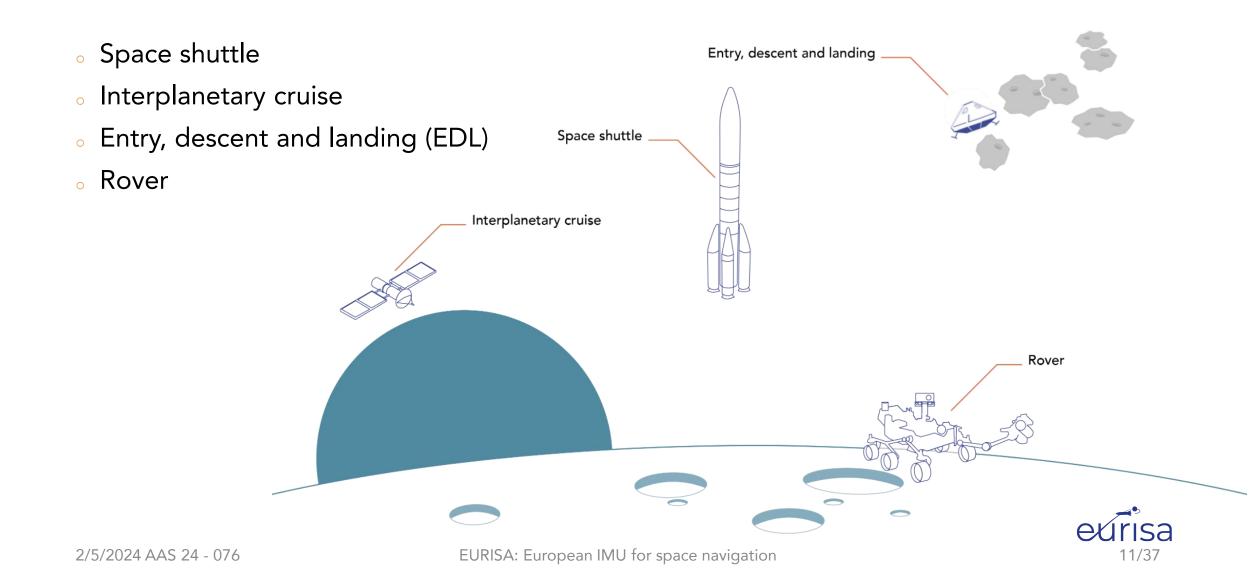
- Algorithm
- Sensor fusion
- Simulation
- Test facilities

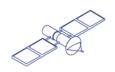

ETH zürich

Accelerometer designed for space electronics

exail

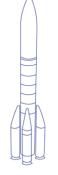
- 3 gyroscopes
- 3 accelerometers
- Electronics
- Algorithms
- Assembly and implementation
- Testing



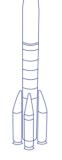

Targeted Missions

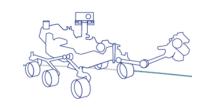
Targeted Missions

Mission Specificities

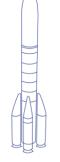

Applications	Interplanetary cruise	
Typical Missions	 Carrier module, In-orbit rendezvous Missions at Lagrange point 	
Mission Specificities	Long-term stabilitySensitivity	
Technical Requirements	 FOG/ACC noise FOG/ACC dead zone ACC bias and stability 	

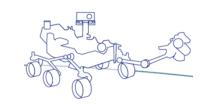
Mission Specificities


Applications	Interplanetary cruise	EDL and Launchers
Typical Missions	 Carrier module, In-orbit rendezvous Missions at Lagrange point 	 Moon landing Mars Robotic Exploration, ExoMars Descent Module
Mission Specificities	Long-term stabilitySensitivity	 Harsh mechanical/thermal environment
Technical Requirements	 FOG/ACC noise FOG/ACC dead zone ACC bias and stability 	 FOG/ACC performance ranges FOG/ACC scale factor misalignments

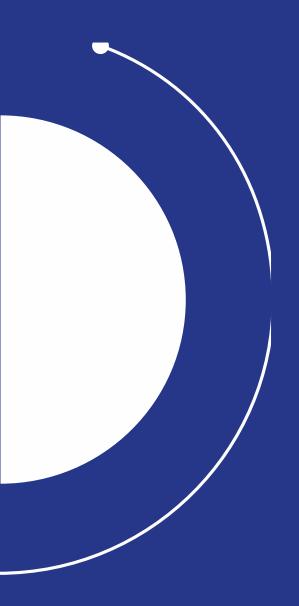


Mission Specificities

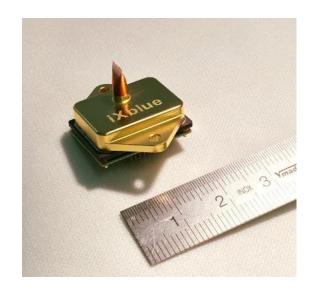

14/37


Applications	Interplanetary cruise	EDL and Launchers	Rover
Typical Missions	 Carrier module, In-orbit rendezvous Missions at Lagrange point 	 Moon landing Mars Robotic Exploration, ExoMars Descent Module 	 Lunar programs/missions, MMX Mars Robotic Exploration
Mission Specificities	Long-term stabilitySensitivity	 Harsh mechanical/thermal environment 	 Electrical and space efficiencies
Technical Requirements	 FOG/ACC noise FOG/ACC dead zone ACC bias and stability 	 FOG/ACC performance ranges FOG/ACC scale factor misalignments 	 System mechanical footprint Power consumption

Mission Requirements



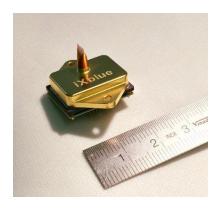
Sei	nsors	Interplanetary cruise	EDL and Launchers	Rover
	Range	$\pm 10 \text{ °/s (sat.} > 500 \text{ °/s)}$	$\pm 100 ^{\circ}/\mathrm{s} (sat. > 800 ^{\circ}/\mathrm{s})$	± 10 °/s (sat. > 500°/s)
FOG	Bias	0.15°/h	0.15 °/h	0.5 °/h
	Scale For	300 ppm	50 ppm	1,000 ppm
	Range	$\pm~0.1~{f g}$ (sat. $\pm~0.5~{f g}$)	± 12 g (sat. ± 20 g)	± 1 g (sat. ± 3 g)
ACC	Bias	50 μ g	300 μ g	500 μ g
	Scale For	500 ppm	150 ppm	1,000 ppm
Sampl	ling Rate	≤ 20 Hz	≤ 100 Hz	≤ 10 Hz
	hanical onment	$\leq 0.1 \mathbf{g}$ [0,1 kHz]	11 g_{RMS} [0,10 kHz]	≤ 0.1 g [0,1 kHz]



IMU Main Features

Small volume and low power

- 2 liter (½ gallon)
- 。 < 2 kg (4 lbs)
- 。 12 W


Fast

- ∘ > 1 kHz internal bandwidth
- Data rate up to 500 Hz
- Accurate data in less than 1 s

Durability

- GEO 15 years + EOR (LEO compatible also)
- 800 FITS target for GEO 15 years + EOR (FIDES 2009)

Electronics

Inheritage

- FPGA based
- Design rules
- Reduction of the number of components

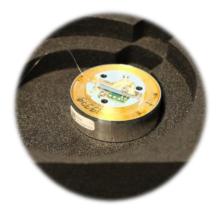
Innovation

- ITAR free
- Space ACC
- Exail smallest ACC

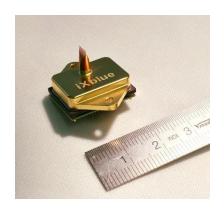
Electronics

Inheritage

- FPGA based
- Design rules
- Reduction of the number of components


Innovation

- ITAR free
- Space ACC
- Exail smallest ACC


Optics

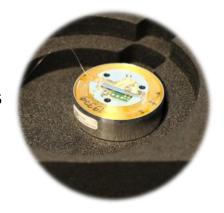
Inheritage

- Homemade optical parts manufacturing (rad-hard fiber, modulators)
- Compact optical components

Electronics

Inheritage

- FPGA based
- Design rules
- Reduction of the number of components


Innovation

- ITAR free
- Space ACC
- Exail smallest ACC

Optics

Inheritage

- Homemade optical parts manufacturing (rad-hard fiber, modulators)
- Compact optical components

Mechanics

Inheritage

- Symmetrical pyramid
- Compact magnetic shield

Innovation

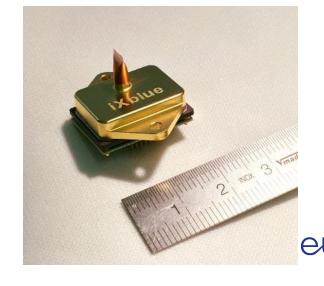
- Includes 3 ACC channels
- Compact design
- Harsh environment compatible

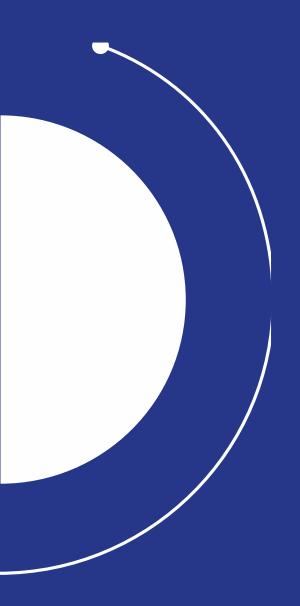
Small volume and low power

- 2 liter (½ gallon)
- $_{\circ}$ < 2 kg (4 lbs)
- 。 12 W

Performance

	FOG	ACC
Dynamic range	± 800 °/s	±12 g
Bias stability over 1h (steady temperature)	10 ppm	20 μ g
Scale factor stability (all effects)	300 ppm	150 ppm
Angular Velocity Random Walk (ARW VRW)	0.0025 °/√h	4 mm/s/\s\/h

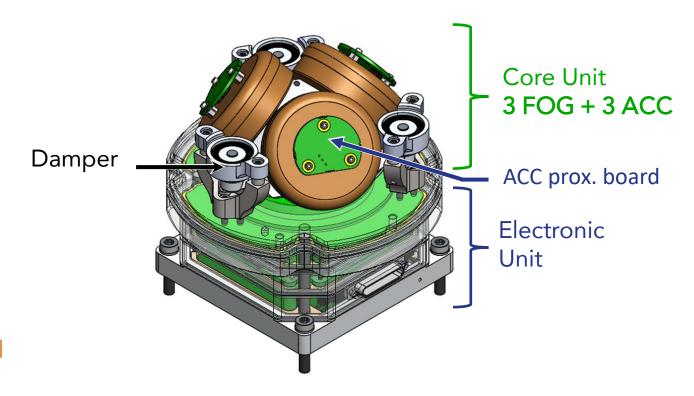

No other noise contributors for FOG technology like AWN, flicker noise...


Fast

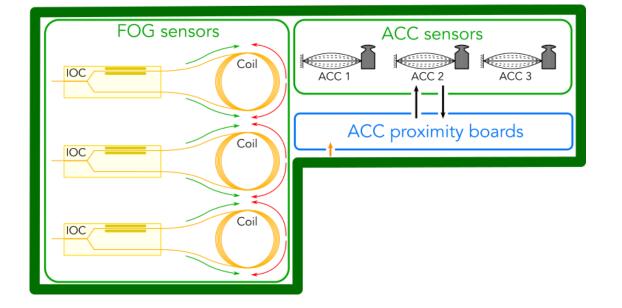
- > 1 kHz internal bandwidth
- Data rate up to 500 Hz
- Accurate data in less than 1 s

Durability

- GEO 15 years + EOR (LEO compatible also)
- 800 FITS target for GEO 15 years + EOR (FIDES 2009)

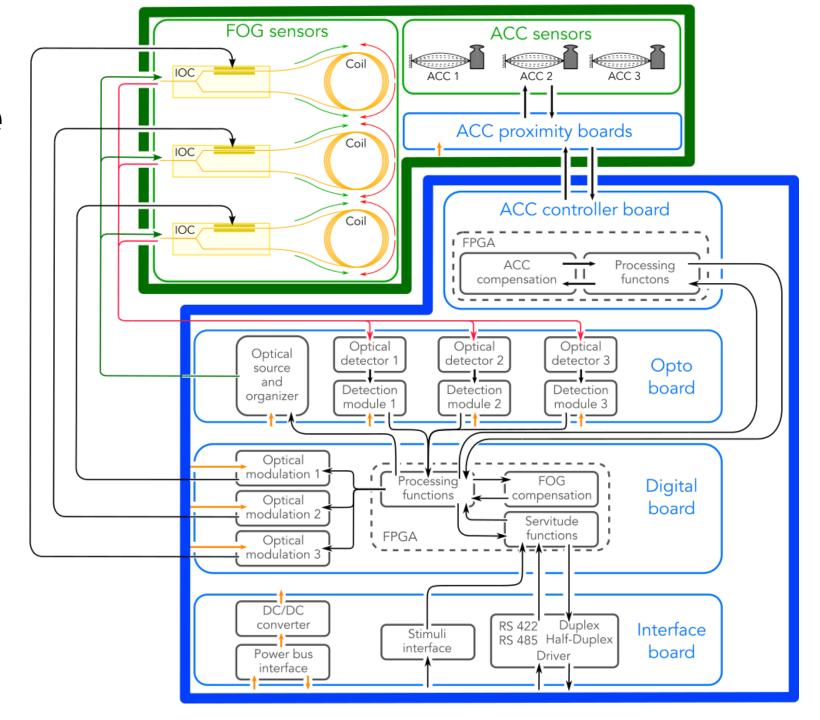


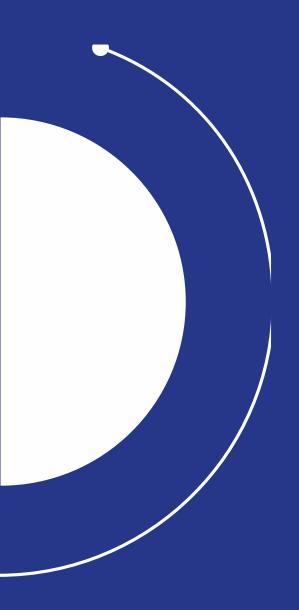
3 FOG + 3 ACC mounted on a solid pyramid:


- Robust Orthogonality, Harmonization
- Low deformation in harsh environmentDamped pyramid:
- Safe for severe mechanical environment

On-board electronics:

- o On-board system-tailored thermal model
- Coning-sculling compensation
- Integrated navigation algorithms

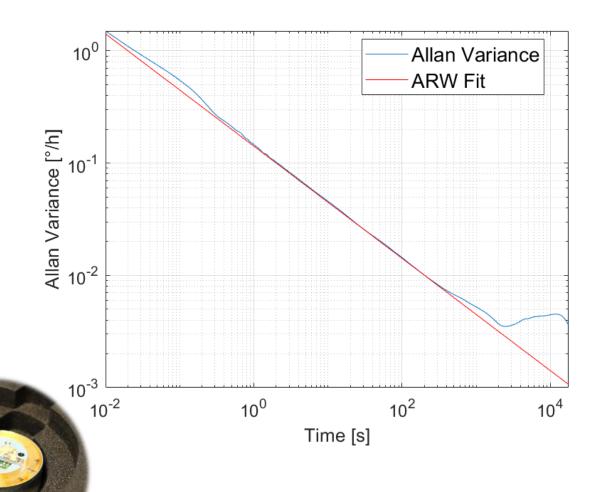




Digital board integrates on-board IMU intelligence:

- Sensor Dynamic compensation
- Coning-Sculling compensation
- Lever Arm compensation

IMU Inertial Measurements



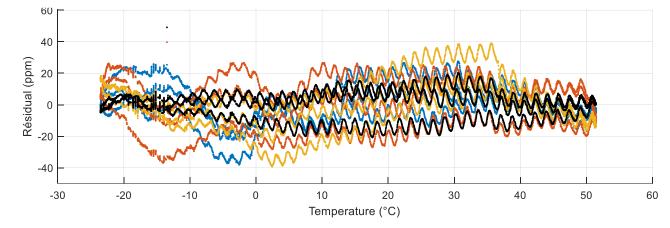
FOG Noise Performance Allan Variance

ARW below 0.0025 °/ \sqrt{h} on all the bandwidth

- No quantization
- No other noise contributors (ARW, RRW)
- Engineering model's ARW measurement 0.00231 °/ \sqrt{h}
- Stable in the [−15; 55]°C ([5; 131]°F)

Power spectral density confirms the noise **flatness** over the **full-frequency** range

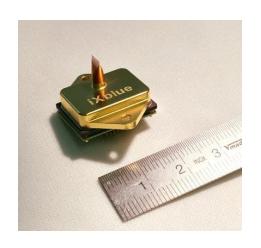
FOG Thermal Modeling

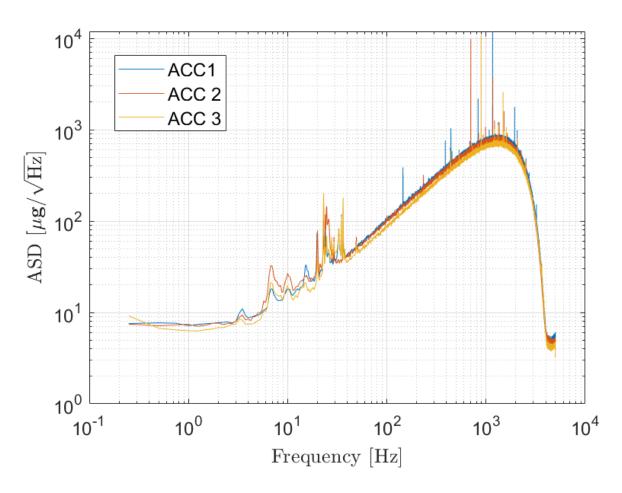

Inheritance from the development of **Astrix NS**, all systems:

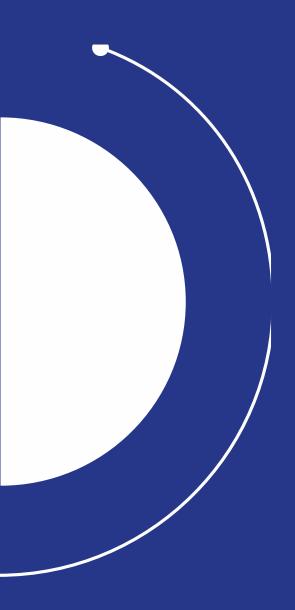
- Are individually calibrated in temperaure using thermal profiles
- Embed and run their individuallytailored thermal compensation model

Thermal chamber on **3-axis rotating** table

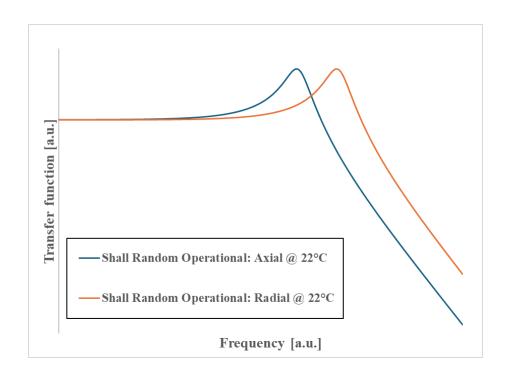
Modelled IMU: Scale factor residual below 50 ppm




Scale factor residual after thermal modeling on Astrix NS


ACC Noise Performance: Amplitude Spectrum Density (ASD)

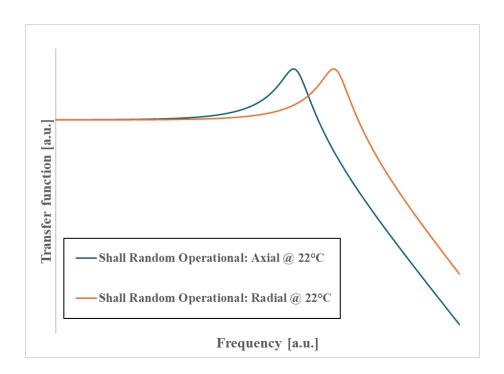
ASD match $8 \mu g/\sqrt{Hz}$ at 3Hz In-run stability $< 10 \mu g$

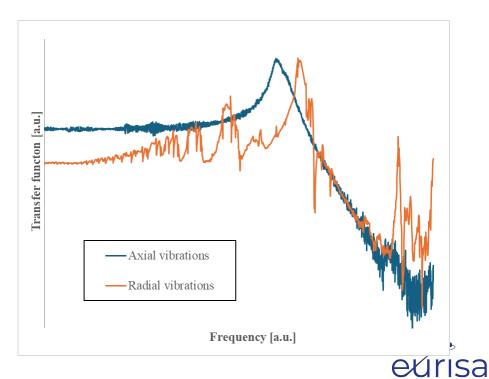

Development Progress

Environmental Tests

Dampers' Validation:

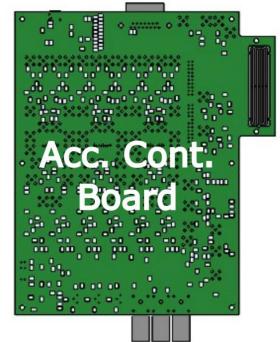
- Quality factor
- Resonance frequency
- Maximum displacement
- Sensor survival




Environmental Tests

Dampers' Validation:

- Quality factor
- Resonance frequency
- Maximum displacement
- Sensor survival

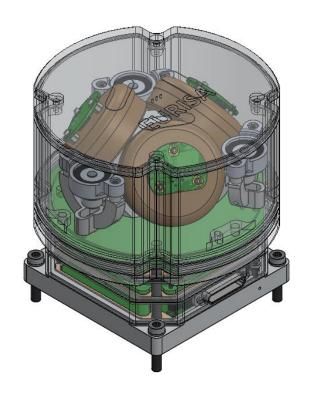

33/37

Currently

Building a flat IMU (complete IMU out of housing):

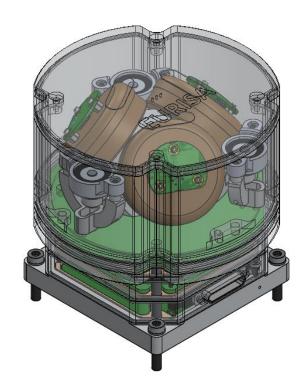
- Inject VHDL code (FPGA)
- Test communication protocols
- Thermal modeling
- First inertial performance tests

New design of the ACC controller board and build the **first EM** for exhaustive testing.



When ?!

- First EM available in 2025 and fully tested in late 2025 in the scope of the H2020 project.
- FM available following qualification (crucial qualification heritage from Astrix NS) in the coming years.



When ?!

- First EM available in 2025 and fully tested in late 2025 in the scope of the H2020 project.
- FM available following qualification (crucial qualification heritage from Astrix NS) in the coming years.

Exail thanks its partner in the EURISA project Airbus DS, DLR and ETHZ, the European Union.

Thank you for your attention

