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A B S T R A C T

Resonance frequency measurements are used for various applications: atomic force microscopes, mass detection, 
biochemical and inertial sensors. In this article a detailed analysis of the performances of a resonance frequency 
measurement method are presented and demonstrated using a space grade accelerometer. The method consists of 
replacing the feedback of the oscillator with a controller that drives the sensor’s input, acquires the sensor’s 
output, determines the phase shift between the sensor’s input and output, converts it to a resonance frequency 
measurement and adjusts the drive signal’s frequency. The innovative phase to frequency conversion model used 
ensures a fast convergence of the drive signal towards the resonance frequency. The maximum measured relative 
error while searching for the resonance frequency is of 0.04 [%]. The tracking of the resonance frequency shows 
no oscillations or overshoots because the resonance frequency is exactly measured. The achieved measurement 
noise floor for the specific sensor used is 0.13 [mHz/

̅̅̅̅̅̅
Hz

√
] at 1 [Hz]. The measurement method presented can be 

exploited for other applications which also rely on the measurement of the resonance frequency of a piezo- 
electric resonator.

1. Introduction

Measuring the resonance frequency is used for many applications 
including: atomic force microscopes [1], mass detection [2], inertial 
sensors [3,4] and the detection of biological and chemical substances 
[5]. This article presents the electrical circuit and data processing al-
gorithm used to acquire the resonance frequency of a Micro Electro 
Mechanical System (MEMS) accelerometer [6,7] for space applications.

The measurement of the resonance frequency is not a straightfor-
ward operation. It requires, in fact, the following functions: exciting the 
sensor, acquiring the output signal and processing the data. For each of 
these functions different implementations have been tested in literature.

The two main solutions to drive the sensor are the self-sustained 
oscillator [1,8] and the digital feedback oscillator [9]. The 
self-sustained oscillator relies on an analog feedback loop which keeps 
the sensor at resonance. The analog feedback may include an Automatic 
Gain Control (AGC) circuit to limit the amplitude of the excitation signal 
otherwise the crystal is overdriven.

The digital feedback oscillator does not require an AGC and it does 

not overdrive the crystal. Because the system has control over the drive 
signal, it can measure the transfer function of the sensor. From the 
transfer function the system can determine the internal parameters of 
the sensor. The values of the internal parameters can then be tracked 
over time or in different conditions to verify that the sensor is always 
operating within specifications.

Concerning the acquisition, the output sense signal is usually 
measured using an Analog to Digital Converter (ADC) [9,10] or a 
comparator [11–13]. The ADC makes it possible to sample the signal at a 
fixed sampling frequency. The sampling frequency can be synchronized 
with other instruments, thus simplifying the comparison of data from 
different sources. Furthermore, the ADC provides information on the 
amplitude of the sense signal, which can be used to determine if the 
sensor is operating correctly (e.g.: if the amplitude drops, the sensor 
might be damaged and the measurement un-reliable). The comparator 
method requires less components and power, yet at the cost of an 
irregular sampling rate and lack of amplitude information.

The data processing strongly depends on the acquisition method 
selected. With the comparator one can, for example, make a time-to- 
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digital converter, count the number of cycles in a given time interval or 
interpolate the input values to obtain a fixed sampling rate. If the ADC is 
used a demodulation algorithm may be used instead. If the self-sustained 
oscillator is adopted there is no need for a signal generator to drive the 
sensor, which is mandatory if the digital feedback oscillator is used. 
Discussing all the possible implementations is beyond the scope of this 
article, the focus is placed on the implemented solution, which consists 
of a digital feedback oscillator using an ADC.

For the sensor studied in this article different comparator-based 
strategies have been applied to measure the acceleration [11,12]. A 
theoretical analysis of different measurement architectures has been 
performed [14,15]. Some aspects of the design, such as the stray 
capacitance compensation [16,17], noise [18] and data processing [10]
was analysed in previous literature.

This article complements the theoretical analysis by describing the 
hardware design, explains what are the requirements to find and track 
the resonance frequency using a digital feedback loop and shows how 
the different parts of the measurement method impact the measure-
ment’s properties providing a valuable overview of the system.

The method used for this study relies on an ADC for the acquisition 
and on a digital feedback oscillator architecture to drive the sensor and 
track the resonance frequency. The accelerometer is designed such that 
the resonance frequency of the device changes proportionally to the 
applied acceleration [19]. The sensor is driven using a sinusoidal signal 
to measure the resonance frequency.

The complex impedance of the sensor introduces a phase shift φ 
between the input of the device and the output. The phase shift is 
measured and converted to the difference between the resonance fre-
quency and the drive frequency Δω = ωs − ωd, where Δω is the error, ωs 
is the resonance frequency and ωd is the drive frequency.

The conversion is achieved using a model of the sensor. The model is 
created during self-initialisation by measuring for each value of φ, the 
corresponding Δω value and storing it in memory. The error information 
is used to keep the sensor at resonance using a feedback loop.

This article is structured as follows: Section 2 presents the theory of 
the measurement and of the data processing, Section 3 briefly explains 
the test setup used for the measurements, Section 4 illustrates and 
discuss the results obtained and Section 5 provides final remarks and 
conclusions.

2. Theoretical analysis

In this section the analog design is described first, then the algorithm 
to acquire the data is presented. The analog design describes the stray 

capacitance compensation and the analog amplification. The algorithm 
section explains how φ is computed, how the φ to Δω conversion is 
done, how ωs is determined and how the feedback loop is closed.

Fig. 2–1 shows the sensor’s electrical model as well as the electronic 
circuit used to amplify the output signal of the sensor. The sensor model 
consists of the motional parameters Rm, Cm and Lm and of the stray 
capacitance C0. The motional parameters define the resonance fre-
quency ωs = 1/

̅̅̅̅̅̅̅̅̅̅̅̅
CmLm

√
and the quality factor Q = Lmωs/Rm of the 

sensor.

2.1. Analog electronics

The sensor has an unwanted stray capacitance, through which flows 
the current ipar. This current causes a phase shift [16,17], which inhibits 
the measurement for ωd > ωs, hence the need to reduce or ideally 
remove ipar. This is done using the stray capacitance compensation cir-
cuit, which creates the current icomp, such that ipar + icomp ≈ 0.

Solving the circuit in Fig. 2–1, yield to Eq. (2–1), under the 
assumption that the input current of the amplifier is negligible. 

itot = im + ipar + icomp

=
Vdrive − Vninv

Zm
+ (Vdrive − Vninv) ∗ sC0 +

(

−
Vdrive

a
− Vninv

)

∗ sCcomp

(2-1) 

Where a is the attenuation of the resistive divider made by Rdiv1 and 
Rdiv2. Given that Vdrive has a much higher amplitude than Vninv it is 
possible to assume that Vdrive − Vninv ≈ Vdrive and − Vdrive − Vninv ≈ Vdrive. 
This results in Eq. (2–2): 

itot =
Vdrive

Zm
+ Vdrive ∗ sC0 −

Vdrive

a
∗ sCcomp = Vdrive ∗

(
1
Zm

+ s
(

C0 −
Ccomp

a

))

(2-2) 

Once the compensation circuit is appropriately tuned by selecting 
a = (Rdiv1 +Rdiv2)/Rdiv2, then the residual stray capacitance Cʹ

0 = C0 −

Ccomp/a ≈ 0. This assumption yields to Eq. (2–3) where ωd is the fre-
quency of the drive signal Vdrive. 

itot

Vdrive
=

1
Zm

=
1

1
sCm

+ sLm + Rm
=

s
Lm

s2 + Rm
Lm

s + 1
LmCm

=

ω2
d Rm

L2
m

+
jωd
Lm
( 1

LmCm
− ω2

d)
(

1
LmCm

− ω2
d

)2

+
ω2

dR2
m

L2
m

(2-3) 

The goal of the analog amplification is to convert the current output 

Fig. 2-1. Sensor model including sensing and compensation circuit.
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of the sensor in an amplified voltage that can then be acquired and 
treated by the digital feedback loop.

Knowing the load impedance Zload = Rload/(1+jωdRloadCload) and the 
bandpass gain of the amplifier A, it is possible to write Eq. (2–4). 

Vsense = A ∗ Vninv = A ∗ Zload ∗ itot = A ∗ Zload ∗

ω2
d Rm

L2
m

+
jωd
Lm

(
ω2

s − ω2
d
)

(
ω2

s − ω2
d

)2
+

ω2
dR2

m
L2

m

∗ Vdrive

(2-4) 

The stray capacitance compensation circuit, the load impedance and 
the amplifier are designed to add a constant phase shift φamp over the 
operating frequency range of the sensor.

2.2. Digital feedback

Fig. 2–2 presents the measurement method and the feedback loop for 
the sensor. The algorithm is presented starting from the output signal of 
the sensor, which is sampled, demodulated, filtered, converted to a 
resonance frequency measurement and then used to correct the drive 
frequency of the sensor.

The sensor output signal is sampled at a frequency higher than 
double its maximum resonance frequency using an ADC. After sampling, 
the data is demodulated, this is accomplished by multiplying the sam-
ples with sin(θ) and cos(θ), where θ is the value of the phase used to 
create the drive signal at the moment the sample is taken. The sine and 
cosine values are called Y and X respectively. Using θ for the demodu-
lation ensures that the signal from the sensor is always demodulated 
with the correct frequency, which corresponds to ωd.

After demodulation the X and Y signals are filtered using a low-pass 
Finite Impulse Response (FIR) filter. The filter removes the unwanted 
signal at double the drive frequency and reduces the bandwidth to the 
measurement bandwidth ωmeas. Because the high frequency content of 
the signal is removed by the FIR filter, X and Y can be down-sampled.

The down-sampled X and Y values are used to compute the power 
and phase φ of the acquired signal. The power can be used as a house- 
keeping measurement, to show that the sensor is in resonance.

The phase can be converted to a resonance frequency measurement 
using one of the three main options available: the linear model, the 
theoretical sensor model and the measured sensor model. The linear 
model is the simplest, but it is only accurate in a small frequency around 
resonance (as shown in Fig. 4–1). The theoretical model is more accu-
rate, but with a similar computational power it is possible to use the 
measured sensor model, which is the most accurate.

Another advantage of the measured sensor model is that the φ to Δω 
Look-Up Table (LUT) can be updated and measured remotely. Access to 
this information can be used in production, testing and to understand 

possible issues remotely once the solution is deployed. For example, if 
the quality factor decreases over time, this might be a sign of a leak in 
the packaging of the sensor or of ageing of the crystal. During testing this 
can lead to discarding the sensor, while if the same issue is faced after 
deployment the φ to Δω LUT can be updated to keep using the sensor 
although with a reduced performance.

The LUT is created during a self-initialisation procedure, which 
consists of measuring for each Δω = ωs − ωd the value of φ and storing 
the results in memory. The self-initialisation is done while the sensor is 
in a static environment. During the subsequent measurements the value 
of φ is converted to Δω using the data stored in memory and then ωs is 
computed using ωs = Δω + ωd.

As explained in Refs. [1,14,15] the sensor has a limited bandwidth, 
given by ωBW = ωs/2Q. In practice if only the φ to Δω LUT is used, the 
bandwidth of the measurement is limited to ωBW. Because of the high 
quality factor Q of MEMS sensors we can assume that ωmeas > ωBW. The 
system is designed such that for every φ measured ωd is updated (i.e. the 
loop frequency is equal to ωmeas). The digital controller can therefore 
react faster to resonance frequency changes than the sensor, thus 
ensuring that resonance is always maintained.

The bandwidth limitation can be overcome by adding the derivative 
of φ over time dφ/dt to the measured resonance frequency ωs, thus 
obtaining ωś = ωd + Δω + dφ/dt. To understand how this bandwidth 
increase works, let’s suppose that ωs = ωd = constant, then Δω =

dφ/dt = 0. If the resonance frequency changes abruptly, then Δω will 
slowly change (limited by ωBW), while dφ/dt will be rather large right 
after the change and will decrease as ωd converges to the new ωs. dφ/dt 
helps therefore capturing the sudden change in resonance frequency, but 
it comes with a noise increase, as explained in Section 4.4.

To close the feedback loop, Δω is used in a Proportional Integral and 
Derivative (PID) controller, which applies a correction to the drive fre-
quency to bring it closer to the resonance frequency of the sensor ωd(t) =

ωd(t − 1) + Ki ∗ Δω. The PID controller keeps the drive frequency as 
close as possible to the resonance frequency of the sensor even if the 
resonance frequency changes over time. This ensures that the lowest 
noise is obtained.

When using an appropriate model for the φ to Δω LUT an integrative 
controller with a constant lower than 1 is enough to find and track the 
resonance frequency of the sensor without oscillations or overshoots. 
Using a constant just below 1 ensures that the loop does not become 
unstable.

The last step of the algorithm is the creation of the drive signal. This 
is achieved using the phase accumulator, which updates the phase of the 
drive signal θ using the current value of the drive frequency computed 
by the PID controller θ(t) = θ(t − 1) + ωd ∗ dt. The phase is then con-
verted to an amplitude value using the sine LUT and modulated to create 

Fig. 2–2. Measurement algorithm.
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an analog voltage. The modulation can be implemented digitally in the 
programmable device or using an external Digital to Analog Converter 
(DAC).

3. Test setup

Fig. 3–1 shows the test setup used to acquire the data from the 
accelerometer. The Lock-In Amplifier (LIA) performs the sampling, 
demodulation and down-sampling of the sense signal from its input port. 
It provides the FIR-filtered X and Y values to the computer, where they 
are then treated and used to perform the measurement.

Three programs are used to control the LIA: for the transfer function 
test (see Section 4.1) the LIA performs a frequency sweep, for the 
convergence and tracking tests (see Sections 4.2 and 4.3) the LIA tracks 
the resonance frequency using the algorithm described in Section 2.2
and finally for the noise measurement (see Section 4.4) the LIA drives 
the sensor at resonance, keeping a constant drive frequency.

One can notice that in the test setup the compensation signal is 
controlled by the LIA, while the drive signal is the inverted copy of the 
compensation signal, this is due to a limitation of the prototype. A phase 
shift of − 180 [deg] is applied to make the results equal to the ones of the 
final implementation, more understandable and easier to compare with 
literature.

Different tests are performed using the same test setup. The first one 
consists of the measurement of the transfer function of the sensor. The 
data of the transfer function of the sensor is then used to implement the 
φ to Δω LUT for the later tests. The second test shows that it is possible 
for the system to efficiently find the resonance frequency of the sensor 
within a wide frequency range. The third test is used to show that the 
controller is able to track the resonance frequency of the sensor and that 
the results match with the expected values. Finally, the noise of the 
measurement is presented and the different noise contributions are 
analysed.

4. Results

In this section the results from the tests are presented and discussed. 
Section 4.1 presents the measurement of the transfer function, Section 
4.2 shows that the proposed method is capable of finding the resonance 
frequency, Section 4.3 deals with the tracking behaviour, and Section 
4.4 analyses the noise performance.

4.1. Transfer function measurement

The goal of this measurement is to show that the measured transfer 
function of the sensor and the theoretical model derived from Eq. (2–4)
coincide within the assumptions made for the model. The transfer 
function is measured using the test setup presented in Fig. 3–1.

The LIA is programmed to find the resonance frequency ωs and then 
measure the X and Y values in a 400 [Hz] range around it. This range 
corresponds to the measurement range of the sensor. The X and Y values 
are then processed to compute the amplitude and phase of the transfer 
function.

Fig. 4–1 compares the measured transfer function with the theoret-
ical model. A phase shift of − 99.8 [deg] is added to the model to account 
for the phase shift φamp introduced by the sensing amplifier and the stray 
capacitance compensation circuit (see Section 2.1).

One can notice that at frequencies higher than the resonance fre-
quency of 63702 [Hz], the model and the measured phase and amplitude 
start to diverge. This is because of the residual stray capacitance Cʹ

0, 
which starts to have an effect at higher frequencies.

These results show that the theoretical model and the measurement 
coincide rather well near the resonance frequency, but that they diverge 
because of the residual stray capacitance.

4.2. Convergence test

The convergence test shows that the proposed method converges to 
the correct resonance frequency measurement even when the initial Δω 
is large. To prove this the φ to Δω LUT is created using the data 
measured during the previous experiment. The initial drive frequency is 
set to ωd(t = 0) = ωs + ΔΩ, with ΔΩ = ±200 [Hz], the algorithm is 
then run and data are collected. The value of ΔΩ = ± 200 [Hz] corre-
sponds to the measurement range of the sensor used for the tests.

The algorithm is able to converge towards the expected value for the 
two tested cases. Fig. 4–2 shows that the method is able to determine the 
resonance frequency with an error smaller than 1 [Hz] after only five 
updates of the drive frequency.

This measurement shows that the proposed φ to Δω LUT works as 
intended. The upper part of Fig. 4-2 compares the measurement results 
in green with the drive frequency in red. One can immediately notice 
that the green lines, to which the Δω correction from the LUT is added, 
are much closer to the final result than the red ones. This means that the 

Fig. 3–1. Measurement test setup.
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proposed method is capable of accurately measure the resonance fre-
quency even if the steady state is not reached yet.

The maximum measurement error, which occurs at the start of the 
measurement, is below 0.04 [%], while the drive frequency has an error 
of 0.3 [%]. The proposed model reduces the relative error of the mea-
surement by almost one order of magnitude. For the sensor tested in this 
article the system is accurate when powered up and quickly converges to 
the resonance frequency.

The feedback loop is capable of reaching the setpoint without os-
cillations or overshoots. This is ensured by design: Δω is based on the 
properties of the specific sensor and therefore the resonance frequency is 
always computed exactly.

For this test the integrative coefficient Ki of the PID controller is set to 
0.9, while the proportional Kp and derivative coefficients Kd are set to 
0. The controller is stable as long as Ki is < 1 and Kp = Kd = 0.

One can notice that the sampling rate is rather low. This limitation is 
a consequence of the test setup and can easily be fixed by implementing 
the algorithm in a programmable device. Because of the low sampling 
rate, the dφ/dt is not used for computing the resonance frequency. This 
has no impact on the result because the value of dφ/dt is not used by the 
PID controller.

4.3. Tracking performance

During the tracking test the sensor is mounted on a tilting support, 
such that the orientation of the sensitive axis of the sensor with respect 
to gravity can be changed. The sensor is tilted in three different posi-
tions: left, up and down. In the left position the measured acceleration is 
between − 1[g] and +1 [g], but not zero due to a mechanical limitation of 
the tilting support. In the face up position an acceleration of +1[g] is 
measured and in the face down position and acceleration of − 1[g] is 

measured. This test is not designed to measure the linearity of the sensor 
(test results for the sensor used in this article are already available in 
Ref. [19]).

The test is divided in two phases: during the first phase the resonance 
frequency of the sensor is tracked while the sensor is moved into the 
three positions (green line on the left of Fig. 4–3), during the second 
phase the sensor is locked in the three positions, while the transfer 
function is measured (right side of Fig. 4–3).

Fig. 4–3 shows on the left the time series of the first measurement 
and on the right the transfer function of the sensor for comparison. One 
can notice that the resonance frequency measured with the suggested 
method matches well with the resonance frequency measured using the 
transfer function, as expected.

The sensor used for this test is different than the one used for the 
measurements presented in the previous sections, hence why the 
transfer function is not identical. This also shows the importance of the 
self-initialisation procedure, which ensures that the differences between 
the sensors are corrected by the algorithm.

4.4. Noise performance

This test shows the performance of the proposed method in combi-
nation with the tested sensor and illustrates how the noise performance 
is affected by the limited bandwidth of the sensor.

Let’s assume that the noise of the measured φ is white noise and that 
this white noise is at a level of N (φ). We can now compute the noise 
level after the φ→Δω LUT, N (ωs)LUT. Assuming the system is in a steady 
state with the sensor driven at resonance, we can use the linear 
approximation for the φ to Δω LUT. N (ωs)LUT can then be approxi-
mated with equation Eq. (4–1), where KLUT = 57.34 ∗ 10− 3 [mHz/mdeg]. 
N (φ) is measured to be N (φ) = 2.27

[
mdeg/

̅̅̅̅̅̅
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√ ]
. 
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Fig. 4–1. Sensor model and measurement compared.
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N (ωs)LUT = N (φ) ∗ KLUT (4-1) 

N (ωs)LUT is expected to be constant over frequency, while the 
measured signal is filtered by the oscillator properties for frequencies 
above ωBW. To compensate for the attenuation, the inverse of the 

transfer function of the sensor is applied to N (ωs)LUT . The total theo-
retical noise is given in Eq. (4–2), where HS = 1/(1 + jω/ωBW) is the 
transfer function of the sensor. 
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Fig. 4–3. Tracking test results.
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N (ωs) = N (φ)∗KLUT ∗ |1/HS| = N (φ)∗KLUT ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
ω

ωBW

)2
√

= N (φ)∗KLUT ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
2Q
ωs

ω
)2

√

(4-2) 

Fig. 4–4 shows the resonance frequency noise measured using the 
algorithm presented in Section 2.2 compared to the simple model pre-
sented in equation Eq. (4–2). The model and the measurements are 
coherent. At low frequencies the noise starts to increase with respect to 
the model this is most likely due to ambient noise (e.g.: small move-
ments of the test setup or changes in ambient temperature).

Fig. 4–5 shows N (ωs)LUT and the noise contribution from dφ/dt,
N (ωs)dφ/dt separately. N (ωs)LUT is dominant for low frequencies < ωBW 

and N (ωs)dφ/dt is the major noise contributor for high frequencies 
> ωBW. This is expected as dφ/dt is used to increase the gain of the 
measurement at high frequencies.

To measure signals above ωBW without attenuation, dφ/dt must be 
added. Similarly, by only using dφ/dt the signals at frequencies below 
ωBW will be attenuated.

From these noise results it is possible to get a simple empirical 
intuition: the cause of the noise density increases above ωBW appears to 
be the amplification required at high frequencies to counteract the low- 
pass behaviour of the sensor.

This effect is well document in literature [18] and the results from 
the measurements done in this article agree with previous results.

5. Conclusion

In this article a method to find, track and measure the resonance 
frequency of an oscillating system is presented. The proposed method is 
demonstrated using a MEMS space accelerometer. The accelerometer 
works by having a resonance frequency that changes proportionally to 
the acceleration applied to the sensor. The change of the resonance 

frequency causes a phase shift between the input and output of the 
sensor.

The proposed method uses the phase shift information for the mea-
surement. The value of the resonance frequency is measured using a self- 
initialised look-up table that converts the phase shift into a resonance 
frequency measurement. The LUT accounts for the non-linearity of the 
phase to frequency conversion, which is generally not the case for other 
phase locked loop algorithms, thus providing accurate results even if the 
drive frequency differs from the resonance frequency. The proposed 
algorithm can find the resonance frequency within the measurement 
range without an initial guess and without scanning all the possible 
frequencies. The derivative of the phase shift is added to the converted 
value to increase the measurement bandwidth. This is needed to over-
come the bandwidth limitation of the sensor.

The method converges to the correct resonance frequency in a few 
measurement samples and maintains resonance without overshoots or 
oscillations, ensuring optimal noise performance during measurement. 
The maximum measured relative error while searching for the resonance 
frequency in the measurement range of the sensor is of only 0.04 [%]. 
The measured noise floor for the sensor tested in this article is 
0.13 [mHz/

̅̅̅̅̅̅
Hz

√
] at 1 [Hz].

This paper provides an empirical explanation of the noise shape, 
showing that the increase in noise density for frequencies above the 
bandwidth limit of the sensor is caused by the increased gain of the 
measurement required to compensate the attenuation introduced by the 
sensor. This intuition is in accordance with previous literature and 
theoretical analysis.

Future developments include the implementation of the software in a 
programmable device, such that the sampling rate limitations encoun-
tered using laboratory instrumentation can be overcome. During the 
implementation the effects of quantisation and systematic errors can be 
studied to obtain the maximum performance. This same measurement 
method can be exploited for other applications which also rely on the 
measurement of the resonance frequency of an oscillator.
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Fig. 4–4. Total measurement noise.
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The system can further be improved by giving control over the 
compensation signal’s amplitude to the digital controller, so that the 
compensation signal can be tuned automatically and more precisely. 
This should lead to an easier tuning procedure and better stray capaci-
tance compensation overall.
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